Potenzieren


Vorzeichen beim Potenzieren

    x = (-3)^2 + (-4)^3                                  x = - 55

    x = (-1 * 1/2)^2 - (-3 * 1/4)^3 + (-2 * 1/2)^2       x = 42 * 53/64

    x = (-2ax)^3                                         x = - 8 a^3 x^3

    x = (-3nx)^4                                         x = 81 n^4 x^4                                           


Addieren und Subtrahieren von Potenzen

    11a^3 + 5a^3 - 10a^3 =                                 = 6a^3

    5x^5 + 9x^5 - 12x^3 + 15x^3 - 10x^3 - 6x^5 =           = 8x^5 - 7x^3

    6a^4 + 2a^2 + 8a^4 - a^2 =                             = a^2 + 14a^4


Multiplizieren von Potenzen

    a^3 * a^2 * a^4 =                                      = a^9

    b^2a * b^4a =                                          = b^6a

    (4 a^3 x^7) * 5a^4 =                                   = 20 a^7 x^9


Dividieren von Potenzen

    2a^3 : 2a^5 =                                          = 1/a^2 

    a^3 : a^3 =                                            = 1

    (a - b)^5 : (a - b)^3 =                                = (a - b)^2

    12 a^3  b^4 n^7 / 3 a^2 b^5 n^6 =                      = 4an / b

     2(a + b)^3       a - b
    ------------ * ----------- =                           = 2(a + b) / 3(a - b) 
     3(a - b)^2     (a + b)^2

                 
Potenzieren von Potenzen
 
    (a^3)^3 =                                              = a^9

    a^(3^3) =                                              = a^27
    
    (n^x)^2 =                                              = n^2x

    (3 x^2 y^3)^2 =                                        = 9 x^4 y^6

    [(x^2)^3]^5 =                                          = x^30

    [3a^2 / 2x^3]^3 =                                      = 27 a^6 / 8 x^9

    ( - a^2 / x)^-5 =                                      = - x^5 / a^10   

Potenzieren von Summen

    (2x + 3a)^2 =                 = 4x^2 + 12ax + 9a^2

    (a - b + c)^2 =               = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc

    (a - b)^2 =                   = a^2 - 2ab + b^2

    (a - b)^4 =                   = a^4 - 4 a^3 b + 6 a2 b^2 - 4 a b^3 + b^4

    (a + b)^6 =                   = a^6 + 6 a^5 b + 15 a^4 b^2 + 20 a^3 b^3 + 15 a^2 b^4 + 6 a b^5 + b^6


Pascalīsches Dreieck

                                1                  = (a + b)^0
                              1   1                = (a + b)^1
                            1   2   1              = (a + b)^2
                          1   3   3   1            = (a + b)^3
                        1   4   6   4   1          = (a + b)^4
                      1   5  10   10  5   1        = (a + b)^5
                    1   6  15  20   15  6   1      = (a + b)^6
                  1   7  21  35   35  21  7   1    = (a + b)^7



START FOT 11 MATHEMATIK POTENZIEREN