Potenzieren
Vorzeichen beim Potenzieren
x = (-3)^2 + (-4)^3 x = - 55
x = (-1 * 1/2)^2 - (-3 * 1/4)^3 + (-2 * 1/2)^2 x = 42 * 53/64
x = (-2ax)^3 x = - 8 a^3 x^3
x = (-3nx)^4 x = 81 n^4 x^4
Addieren und Subtrahieren von Potenzen
11a^3 + 5a^3 - 10a^3 = = 6a^3
5x^5 + 9x^5 - 12x^3 + 15x^3 - 10x^3 - 6x^5 = = 8x^5 - 7x^3
6a^4 + 2a^2 + 8a^4 - a^2 = = a^2 + 14a^4
Multiplizieren von Potenzen
a^3 * a^2 * a^4 = = a^9
b^2a * b^4a = = b^6a
(4 a^3 x^7) * 5a^4 = = 20 a^7 x^9
Dividieren von Potenzen
2a^3 : 2a^5 = = 1/a^2
a^3 : a^3 = = 1
(a - b)^5 : (a - b)^3 = = (a - b)^2
12 a^3 b^4 n^7 / 3 a^2 b^5 n^6 = = 4an / b
2(a + b)^3 a - b
------------ * ----------- = = 2(a + b) / 3(a - b)
3(a - b)^2 (a + b)^2
Potenzieren von Potenzen
(a^3)^3 = = a^9
a^(3^3) = = a^27
(n^x)^2 = = n^2x
(3 x^2 y^3)^2 = = 9 x^4 y^6
[(x^2)^3]^5 = = x^30
[3a^2 / 2x^3]^3 = = 27 a^6 / 8 x^9
( - a^2 / x)^-5 = = - x^5 / a^10
Potenzieren von Summen
(2x + 3a)^2 = = 4x^2 + 12ax + 9a^2
(a - b + c)^2 = = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc
(a - b)^2 = = a^2 - 2ab + b^2
(a - b)^4 = = a^4 - 4 a^3 b + 6 a2 b^2 - 4 a b^3 + b^4
(a + b)^6 = = a^6 + 6 a^5 b + 15 a^4 b^2 + 20 a^3 b^3 + 15 a^2 b^4 + 6 a b^5 + b^6
Pascalīsches Dreieck
1 = (a + b)^0
1 1 = (a + b)^1
1 2 1 = (a + b)^2
1 3 3 1 = (a + b)^3
1 4 6 4 1 = (a + b)^4
1 5 10 10 5 1 = (a + b)^5
1 6 15 20 15 6 1 = (a + b)^6
1 7 21 35 35 21 7 1 = (a + b)^7
FOT 11
MATHEMATIK
POTENZIEREN